Nilai lim_(x→0)⁡ sin⁡(4x^2)/(x^2+tan^2⁡ 3x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\sin (4x^2)}{x^2+\tan^2 3x} = \cdots \)

  1. 1/5
  2. 2/5
  3. 3/5
  4. 4/5
  5. 1

Pembahasan:

\begin{aligned} \lim_{x\to 0} \ \frac{\sin (4x^2)}{x^2+\tan^2 3x} &= \lim_{x\to 0} \ \frac{\sin (4x^2)}{x^2+\tan^2 3x} \times \frac{\frac{1}{x^2}}{\frac{1}{x^2}} \\[8pt] &= \lim_{x\to 0} \ \frac{ \frac{\sin (4x^2)}{x^2}}{1+\frac{\tan^2 3x}{x^2}} \\[8pt] &= \frac{\displaystyle \lim_{x\to 0} \ \frac{\sin (4x^2)}{x^2}}{\displaystyle \lim_{x\to 0} \ 1 + \lim_{x\to 0} \ \frac{\tan^2 3x}{x^2}} \\[8pt] &= \frac{4}{1+3^3} = \frac{4}{10}= \frac{2}{5} \end{aligned}

Jawaban B.